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Goals

Part I:

It is desired to learn the required enclosed gas volume for a pressure pulse 

dampener for use with small motor driven diaphragm pumps.

An equation is derived for calculating the required volume as a function of 

pump stroke volume, allowable maximum pressure pulse amplitude and 

absolute pump-up pressure.

The results for this expression are presented in graphic format for use by 

pressure pulse dampener designers.

Part II:

Calculation of the frequency vs. pressure pulse amplitude roll-off rate as a 

function of compliant volume and series flow resistance, is needed.

Suitable equations and useful display graphs are presented that can help the 

pulse dampener designer produce an optimized resultant pulse dampening 

device.
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Scenario for Analysis
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Use Boyle’s Law to Solve for Required Initial Volume

Variables: Pstart ; Vstart                Pend; Vend

Assume: Pstart  Ppulse = pulse amplitude SV = Stroke Volume

Solve for: Vstart  =  required pulse dampener volume

Boyle’s Law (Isothermal ideal gas law): Pstart * Vstart  = Pend * Vend

Let: Vend  =  Vstart – SV Pend  =  Pstart + Ppulse Stroke Volume (SV)     =     Vstart – Vend

Then: Vstart  =  ( Pend/Pstart ) * Vend    =   { ( Pstart + Ppulse ) * ( Vstart - SV ) } / Pstart

After some algebra: Vstart = ( 1 + Pstart / Pulse )  *  SV

Example:

let Pstart = 17 PSI absolute Ppulse = .1 PSI SV = .05 cm^3

then Required Vstart (gas volume in dampener)  = 8.55 cm^3

thus Compliance = C  =  .05 cm^3 / .1 PSI =   .5  cm^3 / PSI
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Damperner Size vs Stroke Volume for .1 PSI 

Pressure Pulses
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Required Pulse Dampener Volume

Dampener Vol. vs Stroke Volume for .05 cm^3 Stroke Vol.
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Conclusions – Part I

1. It seems that at least 10 cm^3 gas volume will be needed to “snub” Model 

XYZ Diaphragm pump pressure pulses to about .1 PSI

2. It seems that 25 cm^3 gas volume would be the largest needed.

3. Use of a fluidic resistor or small feed port restrictors ahead of the 

dampener could possibly reduce these calculated volumes by a factor of 2 

before average pressure drops in the resistor or port restrictors becomes a 

problem.

4. Reduction of pulse amplitudes by fluid resistances and compliance within 

downstream system elements might allow further diminishment of 

downstream pressure pulse
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Part II - Introduction

In the previous section, the compliant gas volume required to dampen pressure 

pulses to a desired amplitude was calculated.  This can be thought of the “DC” or 

zero frequency of pressure excitation case.  Now, using fluidic resistance and 

compliance as variable parameters, I will calculate the pressure response of the 

system as a function of frequency.
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Calculation of pressure pulse roll-off as a function of gas volume and series 

flow resistance is made easier by converting the system to its electrical 

analog … a series-shunt “RC” network.
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From basic network theory, Patten (having some magnitude and phase relative to 

Psource) is given by:

Patten  =  1 / ( Rseconds * C * omega * j  +  1) Complex Frequency Response

Where: omega is angular frequency in radians/sec     omega = 2*pi*frequency

j is the square root of -1

and Rseconds is fluidic resistance in (Pressure / FlowRate) in PSI / (cm^3/sec)

C is compliance in (delta Volume / delta Pressure) in delta cm^3 / delta PSI
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It is now useful to convert from Rseconds and angular frequency to Rminutes and frequency:

The magnitude of Patten(freq)  =  1 / (2*pi*freq*Rmin*C*freq*j / 60  +  1)

is (by algebra): |Patten(freq)|  =  1 / sqrt( ( 2*pi*freq*Rmin*C*freq / 60 )^2 +  1)

Where: frequency is in sec^-1 j is the square root of -1

And Rminutes is fluidic resistance (Pressure/Flow rate)  in  PSI / (cm^3/min)

Rseconds = Rmin / 60

C is compliance (delta Volume / delta Pressure)  in  delta cm^3 / delta PSI
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Pressure Pulse Attenuation Relative to the

"DC" Source Amplitude - Log-Log (Bode) Plot

( Rmin in PSI/cm^3/min  -  C in cm^3 / PSI )
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Pressure Pulse Attenuation Relative to the

"DC" Source Amplitude - Log-Log (Bode) Plot

( Rmin in PSI/cm^3/min  -  C in cm^3 / PSI )
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Pressure Pulse Attenuation Relative to the

"DC" Source Amplitude - Log-Log (Bode) Plot

( Rmin in PSI/cm^3/min  -  C in cm^3 / PSI )
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Conclusions – Part II

1. With the high flow rates (50 ml/min), a series fluidic resistance large 

enough to be helpful filtering out pressure pulses will induce too much 

static pressure drop to be useful.

2. Dividing the total flow into many parallel flow channels with separate 

pulse dampeners for each channel would help the situation quite a bit.

3. The best answer is to seek out or develop small pumps that do not 

generate the relatively high pressure and low frequency pulses that the 

Model XYZ diaphragm pumps do.

4. In the mean time, two pressure pulse dampeners of approximately 9 cm^3 

internal air volume, for each 50 ml/min flow loop, seem to be required for 

adequate pressure pulse dampening.


