# The Effect of Pin Holes of Varying Size and Number 

in

## Porous Reacting Membranes

# A Finite Element Analysis (FEA) Numerical Model 

Craig E. Nelson

## The Nature of "Pin Hole" Defects

1. They are formed by localized process variation (dust particle "point masking") and thus their own statistical distribution.
2. They may be assumed to typically be 5 to 20 times larger than "normal" membrane pores.
3. They are assumed to be "rare", with only a few pin holes per $\mathrm{cm}^{\wedge} 2$ of membrane area..

## How do Pin Holes Harm Performance?

1. They demonstrate imperfect control of the fabrication process environment in an exasperating manner.
2. They "rob" surrounding nearby porous reacting regions of reactant flow.

## Calculated Flow Volume Results For Membranes with One Pore Size

Flow through a pore goes up as the fourth power of pore diameter !!!!

Therefore: if $\mathrm{Q}=10 \mathrm{ml} / \mathrm{min}$ for a membrane with 10 micron diameter pores we get the following data plot for flow with other pore diameters


The Deleterious Effect of Large Pin Holes is Truly Amazing

## Calculated Flow Volume Results For Membranes with One Pore Size

Flow through a pore goes up as the fourth power of pore diameter !!!!

Therefore: if $\mathrm{Q}=10 \mathrm{ml} / \mathrm{min}$ for a membrane with a 10 micron diameter pores we get the following data plot for flow with other pore diameters

| Diameter <br> (microns) | Flow <br> (ul/min) | Flow <br> $(\mathrm{ml} / \mathrm{min})$ | Flow <br> (liters/min) |
| :---: | ---: | ---: | ---: |
|  | 1 |  |  |
| 1 | 16 | 0.001 | 0.000 |
| 2 | 625 | 0.016 | 0.000 |
| 5 | 10,000 | 10.000 | 0.001 |
| 10 | 160,000 | 160.000 | 0.160 |
| 20 | $6,250,000$ | $6,250.000$ | 6.250 |
| 50 | $100,000,000$ | $100,000.000$ | 100.000 |
| 100 |  |  |  |

The Deleterious Effect of Large Pin Holes is Truly Amazing

# Now We Look at Flow Resulting 

from Combinations of both
Standard Size and Large Hole Diameters

## Total Flow - The Combination of Two Pore Diameter Distributions

(A Simplified But Quite Useful Analysis Approach)


Normal Pores

Pin Holes品

Actual Pore Size Statistical Distribution


Mean $=4 \mathrm{u}$

Normal Pores

Mean $=40 \mathrm{u}$

Pin Holes Idealized Pore Size Statistical Distribution

## Using The Following Ratios Simplifies the Analysis

1. The ratio of pin hole diameter to regular pore diameter : Diameter Ratio

Diameter Ratio $=$ Pin Hole Diameter $/$ Normal Pore Diameter
2. The number of pin holes divided by the total number of pores : Nbig Ratio

Nbig Ratio $=$ Npin holes $/($ Nnormal pores + Npinholes $)$

## The Effect of a Mixture of Normal Pores and Pin Holes in a Membrane

Pin Hole Flow vs. Number of Pin Holes and Relative Diameter

Fraction of Total Flow "Stolen" by Pin Holes


Relative Diameter of Pin Holes

| $\square 2$ |
| :--- |
| $\square 5$ |
| $\square 10$ |
| $\square 20$ |

Apparently one or two 20 x normal pin holes per cm ${ }^{\wedge} 2$ "steal" about $15 \%$ of the total flow

## The Effect of a Mixture of Normal Pores and Pin Holes

| Relative number <br> of big pores <br> to small pores | Relative dia. <br> of big pores <br> to small pore dia. | Pinholes <br> per <br> $\mathrm{cm}^{\wedge} 2$ | Fluid <br> Conductivity ratio of <br> big pores to the <br> total of all pores |
| :---: | :---: | :---: | :---: |
| $1.00 \mathrm{E}+00$ | 10 | - |  |
| $1.00 \mathrm{E}-01$ | 10 | - | 1.000 |
| $1.00 \mathrm{E}-02$ | 10 | - | 0.999 |
| $1.00 \mathrm{E}-03$ | 10 | - | 0.990 |
| $1.00 \mathrm{E}-04$ | 10 | 150 | 0.909 |
| $1.00 \mathrm{E}-05$ | 10 | 15 | 0.500 |
| $1.00 \mathrm{E}-06$ | 10 | 1.5 | 0.091 |
|  |  |  | 0.010 |
| Relative number | Relative dia. | Pinholes | Conductivity ratio of |
| of big pores | of big pores | per | big pores to the |

Apparently one or two 20 x normal pin holes per cm $\wedge 2$ "steal" about $15 \%$ of the total flow

Nelson Research, Inc. $\quad 2142-$ N. $88^{\text {th }}$ St. Seattle, WA. 98103 USA 206-498-9447 Craigmail @ aol.com

## Variation in Reactant Concentration in a Complex Domain with "Inside Out" Single Phase Fluid Flow



## Large Pin Hole Location Could Matter When Concentration Gradients are Present

## Conclusions

1. Large (50x) pin holes are a disaster and can not be present in viable membranes
2. A few $5 \mathrm{x}-10 \mathrm{x}$ pin holes per $\mathrm{cm}^{\wedge} 2$ is probably OK
3. Location of pin holes should be tracked. Pin holes on the inlet end of membranes may be expected to have a larger effect on performance than same sized pin holes on the outlet end of reacting membranes
