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Example of an optical system consisting of two lenses with focal lengths f1 and f2 at positions z1 and z2 

respectively.  These lenses are the uncorrected focal beam of a laser-optic system. 

all dimensions are mm 

z1 10:=  f1 20:=  z2 15:=  f2 10000−:=  the minus means meniscus lens 

The calculation starts with a Gaussian beam with wavelength λ  and a waist w0 at z0: 

λ .001:=  w0 5:=  z0 0:=  wavelength is 1 micron 

The system can be described using ABCD matrices for the propagation (M0, M1, and M2) and for the two 

lenses (ML1 and ML2): 
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The beam is calculated from z0 to zmax, using N rays: zmax 101:=  N 20:=  

z z0 zmax..:=  i 0 N..:=  

At the waist at z0 the Gaussian beam can be described with rays of which the divergence and positions lying 

on an upright ellipse (χ=0): 
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φ 0 0.1 π⋅, 2 π⋅..:=  
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Fig. 1. The positions and divergences lie on  
an ellipse that is upright in the beam waist. 

Definition of the positions and divergences of the N rays at z0: 
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After propagation of the beam from z0 to z the position and divergency follow from: 
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Fig. 2a. x(z) as a function of z for the N rays demonstrating the propagation of a Gaussian beam.      
Expanded vertical axis.   This is the ray trace for the unmodified fiber optic laser head. 
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Fig. 2b. x(z) as a function of z for the N rays demonstrating the propagation of a Gaussian beam.   True 
Scale     This is the ray trace for the unmodified fiber optic laser head. 
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Fig. 2c. x(z) as a function of z for the N rays demonstrating the propagation of a Gaussian beam. Highly 
expanded focal zone.  This is the ray trace for the unmodified fiber optic laser head. 



 

Now we do the whole thing all over again.  This time we insert a negative (meniscus) lens into 
the optic path in order to extend the focal distance out to a more useful length.  We see that a focal length 
of -20 mm provides a useful solution. 

Example of an optical system consisting of two lenses with focal lengths f1 and f2 at positions z1 and z2 

respectively: 

all dimensions are mm 

z1 5:=  f1 20:=  z2 10:=  f2 20−:=  the minus means meniscus lens 

The calculation starts with a Gaussian beam with wavelength λ  and a waist w0 at z0: 

λ .001:=  w0 5:=  z0 0:=  wavelength is 1 micron 

The system can be described using ABCD matrices for the propagation (M0, M1, and M2) and for the two 

lenses (ML1 and ML2): 
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The beam is calculated from z0 to zmax, using N rays: zmax 101:=  N 20:=  

z z0 zmax..:=  i 0 N..:=  

At the waist at z0 the Gaussian beam can be described with rays of which the divergency and positions lying 

on an upright ellipse (χ=0): 
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Fig. 1. The positions and divergences lie on  
an ellipse that is upright in the beam waist. 
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Fig. 2a. x(z) as a function of z for the N rays demonstrating the propagation of a Gaussian beam.      
Expanded vertical axis.   This is the ray trace for the modified fiber optic laser head. 
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Fig. 2b. x(z) as a function of z for the N rays demonstrating the propagation of a Gaussian beam.     True 
Scale.    This is the ray trace for the modified fiber optic laser head. 
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Fig. 2c. x(z) as a function of z for the N rays demonstrating the propagation of a Gaussian beam.
 Highly expanded focal zone.   This is the ray trace for the modified fiber optic laser head.  
Notice that the "zone of confusion" seems to show a useful "circular ring" pattern. 
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Fig. 3. The positions and divergences  
at several values of z. 

It is illustrative to calculate the beam quality which remains constant according to Liouvilles theorem and 
should be unity for a Gaussian beam (diffraction limited):  

For this we need the first moment of xθ and the second moments of x and θ: 
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The beam quality (or M2 factor, or 'Times Diffraction Limited' factor) follows from: 
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Fig. 4. The first and second moments as 
a function of z. 
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Fig. 5. The beam quality as a function of z (this 
should be unity for a diffraction limited Gaussian 
beam). 

The beam radius (z), and width (envelope), w(z), can be calculated from the moments: 

R z( )
xvar z( )

xθmean z( )
:=  w z( ) 2 xvar z( )⋅:=  
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Fig. 6a. The beam radius and width calculated from the moments. 
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Fig. 6b. The beam radius and width calculated from the moments. 
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Fig. 6c. The beam radius and width calculated from the moments. 

Last we calculate the diffraction limited beam waist for an ideal lens with parameters 
as follows (from O'Shea page 232): 

convergence double angle: theta_degrees 5:=  

theta_rad theta_degrees
π

180
⋅:=  theta_rad 0.087=  rad λ 1 10

3−
×=  mm 

Dwaist
4λ

π theta_rad⋅
:=  Dwaist 0.015=  mm 

the Rayleigh range is: Range
Dwaist

theta_rad
:=  Range 0.167=  mm 

The calculated beam waist and Rayleigh range are in good agreement with the previous calculations 


