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Example of an optical system consisting of two lenses with focal lengths f; and f, at positions z; and z,
respectively. These lenses are the uncorrected focal beam of a laser-optic system.

all dimensions are mm

zp =10 f) =20 zy =15 f5 := 10000 the minus means meniscus lens

The calculation starts with a Gaussian beam with wavelength A and a waist wy at z,:
A:=.001  wyi=5 z5:=0 wavelength is 1 micron

The system can be described using ABCD matrices for the propagation (M, M4, and M,) and for the two
lenses (M and M ,):

BO(Z) = ifl:(z > ZO)-(Z < Zl),Z - z0,2] - ZO:I
1 By(2)
Mqn(z) =
o (0 ! j
Bl(z) = if[z < zl,O,ifl:(Z < Z2),Z -z1,2y — Zl:l:l
(1 Bl(z)j
MI(Z) =
0 1

Bz(z) = if(z 22,2 - 22,0)

1 By(2)
M2( Z) =
0o 1

1 0 1 0
Mpp=| 1 Mpp:=| 1
f f
The beam is calculated from z to z,,,,,, using N rays: Zax:= 101 N:=2(

=7 Zy s i:=0..N

At the waist at z the Gaussian beam can be described with rays of which the divergence and positions lying
on an upright ellipse (x=0):

A

emax:: — x :=C x(¢) = wo-sin(q) + X) e(q>) = Gmaxcos((b)

0:=0,0.17.. 2.7
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Fig. 1. The positions and divergences lie on
an ellipse that is upright in the beam waist.

Definition of the positions and divergences of the N rays at z:

0; = %n 6, =6(0;) % = x(0))

Or in vector notation: RV =

After propagation of the beam from z, to z the position and divergency follow from:

The positions and divergences of the N rays at z are:

)<1>

T

)<0> T

Xz) = (R(z) B(2) = (R(z)
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Fig. 2a. x(z) as a function of z for the N rays demonstrating the propagation of a Gaussian beam.
Expanded vertical axis. This is the ray trace for the unmodified fiber optic laser head.
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Fig. 2b. x(z) as a function of z for the N rays demonstrating the propagation of a Gaussian beam. True
Scale This is the ray trace for the unmodified fiber optic laser head.
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Fig. 2c. x(z) as a function of z for the N rays demonstrating the propagation of a Gaussian beam. Highly
expanded focal zone. This is the ray trace for the unmodified fiber optic laser head.



Now we do the whole thing all over again. This time we insert a negative (meniscus) lens into
the optic path in order to extend the focal distance out to a more useful length. We see that a focal length
of -20 mm provides a useful solution.

Example of an optical system consisting of two lenses with focal lengths f; and f, at positions z; and z,
respectively:

all dimensions are mm

dn= 5 Fa= 20 Zau= 10 fy:=-20 the minus means meniscus lens

The calculation starts with a Gaussian beam with wavelength A and a waist wy at z,:
Ao=.001  wo:=5 Zan= 0 wavelength is 1 micron

The system can be described using ABCD matrices for the propagation (Mg, M4, and M,) and for the two
lenses (M 4 and M ,):

Mz) = if[(z > ZO)«(Z < Zl),Z - z9,2] — 20]

1 B2
Mal» =

0 1

MZ) = ifl:zS zl,O,if[(ZS 22),2— 21,2y — Zlﬂ

1 By(2)
(D =

Mz) = if(z 22y,Z — 22,0)
1 By(2)
Ma(®) =

0 1

1 0 1 0
M= _L Muai=| _L
fy f
The beam is calculated from z, to z,,,,, using N rays: 7 = 101 N:=20

&= 20 Zmax 1=0.N

At the waist at z; the Gaussian beam can be described with rays of which the divergency and positions lying
on an upright ellipse (x=0):

/Q/mwv:: A X=0 N&((j)) =Wy sin(q) + x) Q,§¢) = Gmax-cos (q>)

T WO

$:=0,01T..2-71
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Fig. 1. The positions and divergences lie on
an ellipse that is upright in the beam waist.

Definition of the positions and divergences of the N rays at z,:

Qi = %n ,QV%: G(G)i) Bda = x(@)i)

Or in vector notation: R ¥ =

After propagation of the beam from z;, to z the position and divergency follow from:

The positions and divergences of the N rays at z are:

(o (v
s = (R)T) " 000 = (Re)T) l
A= 0+ Zmax ~ 20
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Fig. 2a. x(z) as a function of z for the N rays demonstrating the propagation of a Gaussian beam.
Expanded vertical axis. This is the ray trace for the modified fiber optic laser head.

Fig. 2b. x(z) as a function of z for the N rays demonstrating the propagation of a Gaussian beam.
This is the ray trace for the modified fiber optic laser head.
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Fig. 2c. x(z) as a function of z for the N rays demonstrating the propagation of a Gaussian beam.
Highly expanded focal zone. This is the ray trace for the modified fiber optic laser head.

7}\22
| \
) ——
— = —
: — —
3 _—— TS
7
/—
0 10 20 30 40 50 60 70 80 90 100
z

position
(e}

50

124

25

R

—25

z

0
0 10 20 30 40 50 60 70 80 90 100

S~ =
————
= —~
— TN
69 69.2 69.4 69.6 69.8 70 70.2 70.4 70.6 70.8
Z

Notice that the "zone of confusion" seems to show a useful "circular ring" pattern.
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It is illustrative to calculate the beam quality which remains constant according to Liouvilles theorem and
should be unity for a Gaussian beam (diffraction limited):

For this we need the first moment of x6 and the second moments of x and 6:

N-1 N-1 N-1
X0, ean () = % Z (x(z)i~9(z)i) Xy (2) = % Z (x(z)i)2 Byar(2) = % Z (e(z)i)2
i=0 i=0 i=0

The beam quality (or M2 factor, or 'Times Diffraction Limited' factor) follows from:

2 2
BeamQuality (7) := T’T J Xyar (D8 yar (D) = 30,1000 (2)
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Fig. 4. The first and second moments as
a function of z.
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Fig. 5. The beam quality as a function of z (this
should be unity for a diffraction limited Gaussian
beam).
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The beam radius (z), and width (envelope), w(z), can be calculated from the moments:

Xvar (2)

R(7) = ——— W(2) =2 X, (2)

X0 mean (2)
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Fig. 6a. The beam radius and width calculated from the moments.
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Fig. 6b. The beam radius and width calculated from the moments.
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Fig. 6¢. The beam radius and width calculated from the moments.

Last we calculate the diffraction limited beam waist for an ideal lens with parameters
as follows (from O'Shea page 232):

convergence double angle: theta_degrees :=3
theta_rad := theta_degrees %} theta_rad = 0.087 rad A=1x 10
Dwaist := 4—K Dwaist = 0.015 mm
T-theta_rad
. . Dwaist
the Rayleigh range is: Range := ——— Range = 0.167
theta_rad

The calculated beam waist and Rayleigh range are in good agreement with the previous calculations



