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Exploratory Bubble Voltage Analysis Strategy

1. Excerpt 1 minute chunks of representative current noise and bubbleogram data for each of
several reactor current levels

2. Present the data for examination and comparison

3. Present descriptive statistics of the data for examination and comparison

4, Present the Power Spectral Density function of the data for examination and comparison
5. Present the Autocorrelation function of the data for examination and comparison

6. Present Inter-bubble sojourn time analysis
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General Considerations
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Bubble Detection Stochastic Model

Classic Birth-Death-Renewal Stochastic Process Not Stochastic!
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Characterized by three non-observable parameters:  Characterized by two unknown parameters:

Birth Rate — Growth Rate — Separation Size Coalescence Factor — Squeeze Percent
Observable Parameters:

Cell Flow Rate — Cell \Voltage — Cell Current — Cell Pressure — Bubble Det. Voltage

Find: Expected Value of Solute Concentration =

F(Observables) = F(Flow Rate, Voltage, Current, Pressure, Bubble Det. Voltage)
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Bubble Detector Response — Single Bubble
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Bubble Detector Response — Multiple Bubbles
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Bubble Detector Parameter Extraction Strategies

1. Statistical Methods

a. Mean
b. Variance
C. Range

2. Transform Methods
a. Power Spectral Density
b. Autocorrelation

3. Counting Methods
a. Inter-pulse Sojourn Time
b. Bubble Duration
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Statistical Methods
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Statistical Methods - Basic

Mean = Zx

Standard Deviation = s =\ Z(X-®*
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Statistical Methods - Moments

The First Through the Fourth Moments of a Probability Distribution Function

Q0
First Moment = the Mean = J x-F(x) dx
— 00
o0
Second Moment = the Variance = J x2-F(x) dx
— o0
o0
Third Moment = the Skew = J x3-F(x) dx
— Q0
o0
Fourth Moment = the Kurtosis = J x4-F(x) dx
— 0

“Center of Gravity”

“Radius of Gyration”

“Measure of Asymmetry”

“Measure of Central Tendency”

These four parameters quantitatively describe the shape, spread and location of a probability distribution
function. Each parameter is the integrated result of all the data in a particular time series and thus may be used to
compare the histograms from similar but different fuel cell noise current waveforms. Use of these parameters
represents the classical statistical analysis approach to knowledge inference from time series data consisting of

information submerged in random data.
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Statistical Methods — Moments

Different Means
Same Standard Deviation

Same Mean
Different Standard Deviations

013% 2.14% 214%  013%

Different Means 38D 28D 18D 0 +15D +28D +3S8D
Different Standard Deviations
Normal Distribution
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Negatively (lefd Normal Positively (right Leptokurtic distribution Platykurtic distribution
skewed skewed skewed
distribution distribution distribution

Kurtosis - “Measure of skinniness”
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Statistical Models for Bubble Creation and Detection
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Bubble Oriented Statistical Methods — The Poisson Renewal Process

A stochastic point process N (t) is a Poisson process. if the proba-
bility of having one event in any interval d t is constant and equal

to A.
+++++ SO O@

Nelson Research, Inc. 2142 — N. 88t St. Seattle, WA. 98103 USA 206-498-9447 Craigmail @ aol.com




Bubble Oriented Statistical Methods — The Poisson Renewal Process

A Poisson process is a renewal process in which the inter-arrival
times are exponentially distributed with parameter A.
A
s+ A
The cdf and density of the time up to the k-th arrival s; are in

LT

f)=xe™ = fr(s) =

Pkl N /\ ' . el — /\k
fils) = (5 i )\) - Es) = s(s + A)F
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Bubble Oriented Statistical Methods — The Poisson Process

Let us define:

Pu(t) = PriN®) = k} = Fu(t) — Frpa(t)

Taking Laplace transforms:

Y P VY R VS FERS y

Inverting again in the time domain, we obtain the Poisson dis-
tribution:

SYAL:
Pit) = Pr{N() = k) = S0 e
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Bubble Oriented The Poisson Process — Expected # of Events

H(t) = E[N(t)] = é EPr{N(t) = k} = éo ke Py(t)

I P (At)*
= A1)
At)?
— Nt - e M (1 + Nt + (m) + ) = At
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The Poisson Process — Superposition

A superposition of Poisson processes is obtained by cumulating
the occurrences of n independent sources of Poisson processes with
parameters Ai, Ao, ..., A,, respectively.
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The Poisson Distribution — Example 1
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The Poisson Distribution — Example 2

A tlf Pk
Pr{N({) =k}
0.4 -
0 0.0183
1 0.073
0.3 |- At =4 2 0.146
Put) = PriN(t) = k 3 0.195
() N @) } 4 0.195
G 0.104
X X 7 0.059
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The Alternating Poisson Process

The process is constituted by a sequence of Type I variables X’
with density fi(x) followed by a Type II variables X” with den-
sity fo(x). The process starts with probability 1 with a Type [
variable.

XF Xr.r Xr XH ......

If we look at the sequence formed by the occurrence of the Type
[l variables, the process is an ordinary renewal process with inter-
arrival time (X’ + X").
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The Alternating Poisson Process

Let be:
m(t) - Probability Type I variable occurs at time ¢

mo(t) - Probability Type II variable occurs at time ¢

Type I1s in use at time f if:
a) - No Type I event occurs in (0 — ¢);

b) - A Type Il event occurs in u — u+ du (u < t), and no Type
[ events occur in (t — u):
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The Alternating Poisson Process

Type I variable is exponential with rate A;
Type Il variable is exponential with rate p.

, A
f ) = N ) =
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The Alternating Poisson Process — Second Version

Homogeneous Poisson process

A homogeneous Poisson process is characterized by a rate parameter A such that the
number of events in time interval [t,t + t] follows a Poison Distribution with
associated parameter At. This relation is given as:

where N(t + 1) — N(t) describes the number of events in time interval [tt + 1].

Just as a Poisson random variable is characterized by its scalar parameter A, a
homogeneous Poisson process is characterized by its rate parameter A, which is the
expected number of "events" or "arrivals" that occur per unit time.

N(t) is a sample homogeneous Poisson process, not to be confused with a density or
distribution function.

E_'}LTI:/"LT::I'!':
k!

PI(N(t+7)=N@) =H= k=0,1,...
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http://en.wikipedia.org/wiki/Image:Sampleprocess.png

The Alternating Poisson Process — Second \ersion

Non-Homogeneous Poisson process
In general, the rate parameter may change over time. In this case, the generalized rate function

is given as A(t). Now the expected number of events between time a and time b is

Thus, the number of arrivals in the time interval (a, b], given as N(b)-N(a), follows a Poisson
Distribution with associated parameter A, -

A homogeneous Poisson process may be viewed as a special case when A(t) = A, a constant
rate.

b

Xap = | Mt)dt.

il

PN(b) — N(@) = K = E0ut) g
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Bubble Signal Analysis - Transform Methods
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Power Spectral Density Function

o0
Fourier Transform = Magnitude and Phase Spectrum = F(s) = J f(x)-e I-2-1-S dx
— 0
© -
Inverse Fourier Transform = Realor Complex Time Series = f(x) = J F(s)-e_"z'm”d
— 00
0 o0
Power Spectral Density = PSD = J (|Fs)[)%ds o J £(s)-F(s)® ds

where F(s)d) Is the complex conjugate of F(s) and s is the complex frequency (j* ®)

f(x) is the time series to be analyzed and F(s) is the complex (mag and phase) Fourier Transform of the time series

The Power Spectral Density Function tells us at which frequencies there is energy within the time series
that we are analyzing. A plot of amplitude, power or energy vs. frequency is called a “Spectrogram”
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The PSD Function for a Noised Sine Wave

This Half is Usually
\ Not Plotted
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Power Spectral Density Function - continued

What to Look for When Using the Power Spectral Density Function

Spectral Energy Peaks with a Harmonic

Roll-off
;opoe Relationship (f2 =2 * f1 etc.)
f Broadband
1 noise in a
f2 frequency
f range
f 3
0
\ w
0 Frequency (Hz) ——

Sub-Harmonic
or long period
feature
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The Autocorrelation Function

0 0
Auto-Correlation Function = ACF( 1) :J F(’[+X).F(T)¢d|t or J PSD-e_"Z'M” ds

¢

where F(r) is the complex conjugate of F( t) , T is the relative correlation time delay

and s is the complex frequency ( j* ® )

The Autocorrelation Function measures how similar a time series is to itself when compared at
different relative time delays. Because the Autocorrelation Function is the inverse Fourier
transform of the Power Spectral Density Function, it represents the same information ... but ...
in a different way.

The PSD relates the time series and its energy at different frequencies. The ACF relates the time
series to a time delayed copy of itself. Because each is the Fourier transform of the other, a
feature in the time series that repeats itself at a fairly regular time intervals will be represented
by a peak in the Autocorrelation function at a time delay equal to the repetition interval. The
same feature will appear in the Power Spectral Density plot as a “peak” at a frequency equal to
the inverse of the time delay ( freq=1/time).
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The Autocorrelation Function

® Foandom noise 1s similar ta itself, and 1n
phoa=s, only with no time shilt at all

® =o its correlaton funchion 15 o spike

AW periadic signals go in and ot of phase
a=they are time shibed

® = their carrelation funchions are pernadic

® zignals thaot last only o shaort while are
oy similar while they last

® =2 their carrelation funchions are ghort

Magnified and explained on
the next page
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The Autocorrelation Function - Continued

What to Look for When Using the Autocorrelation Function

|  Positive
\ ‘ Correlation
T Peaks
1 1
Maximum 0
correlation = +1 | T —
at zero time
delay 13
_]_ —
12 T = Relative Time Delay
Negative
Roll-off Correlation
Slope Peak
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Summary and Conclusions

A preliminary stochastic model is presented for the bubble
generation and detection processes

Several means of processing bubble signals are presented

By these means, estimates of gas fraction may be obtained
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