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1. Excerpt 1 minute chunks of representative current noise and bubbleogram data for each of 

several reactor current levels

2. Present the data for examination and comparison

3. Present descriptive statistics of the data for examination and comparison

4. Present the Power Spectral Density function of the data for examination and comparison

5. Present the Autocorrelation function of the data for examination and comparison

6. Present Inter-bubble sojourn time analysis

Exploratory Bubble Voltage Analysis Strategy
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General Considerations
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Bubble Detection Stochastic Model
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Classic Birth-Death-Renewal Stochastic Process

Characterized by three non-observable parameters:

Birth Rate – Growth Rate – Separation Size

Not Stochastic!

Characterized by two unknown parameters:

Coalescence Factor – Squeeze Percent

Observable Parameters:

Cell Flow Rate – Cell Voltage – Cell Current – Cell Pressure – Bubble Det. Voltage

Find:   Expected Value of Solute Concentration   =

F(Observables) = F(Flow Rate, Voltage, Current, Pressure, Bubble Det. Voltage) 
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Bubble Detector Response – Single Bubble
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Bubble Detector Response – Multiple Bubbles

Detector
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Inter-Pulse Sojourn Interval  (IPST)
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1. Statistical Methods

a. Mean

b. Variance

c. Range

2. Transform Methods

a. Power Spectral Density

b. Autocorrelation

3. Counting Methods

a. Inter-pulse Sojourn Time

b. Bubble Duration

Bubble Detector Parameter Extraction Strategies
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Statistical Methods
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Statistical Methods - Basic

Mean =

Standard Deviation =
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The First Through the Fourth Moments of a Probability Distribution Function

First Moment    =    the Mean      =  
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Third Moment    =    the Skew      =  
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Fourth Moment    =    the Kurtosis      =  
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“Center of Gravity”

“Radius of Gyration”

“Measure of Asymmetry”

“Measure of Central Tendency”

These four parameters quantitatively describe the shape, spread and location of a probability distribution

function. Each parameter is the integrated result of all the data in a particular time series and thus may be used to

compare the histograms from similar but different fuel cell noise current waveforms. Use of these parameters

represents the classical statistical analysis approach to knowledge inference from time series data consisting of

information submerged in random data.

Statistical Methods - Moments
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Kurtosis - “Measure of skinniness”

Statistical Methods – Moments
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Statistical Models for Bubble Creation and Detection
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Bubble Oriented Statistical Methods – The Poisson Renewal Process
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Bubble Oriented Statistical Methods – The Poisson Renewal Process
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Bubble Oriented Statistical Methods – The Poisson Process
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Bubble Oriented The Poisson Process – Expected # of Events
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The Poisson Process – Superposition
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The Poisson Distribution – Example 1
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The Poisson Distribution – Example 2
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The Alternating Poisson Process
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The Alternating Poisson Process
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The Alternating Poisson Process
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The Alternating Poisson Process – Second Version

Homogeneous Poisson process

A homogeneous Poisson process is characterized by a rate parameter λ such that the 

number of events in time interval [t,t + τ] follows a Poison Distribution with 

associated parameter λτ. This relation is given as:

where N(t + τ) − N(t) describes the number of events in time interval [t,t + τ].

Just as a Poisson random variable is characterized by its scalar parameter λ, a 

homogeneous Poisson process is characterized by its rate parameter λ, which is the 

expected number of "events" or "arrivals" that occur per unit time.

N(t) is a sample homogeneous Poisson process, not to be confused with a density or 

distribution function.

http://en.wikipedia.org/wiki/Image:Sampleprocess.png


Nelson Research, Inc.     2142 – N. 88th St. Seattle, WA. 98103   USA   206-498-9447    Craigmail @ aol.com

The Alternating Poisson Process – Second Version

Non-Homogeneous Poisson process

In general, the rate parameter may change over time. In this case, the generalized rate function 

is given as λ(t). Now the expected number of events between time a and time b is

Thus, the number of arrivals in the time interval (a, b], given as N(b)-N(a), follows a Poisson 

Distribution with associated parameter λa,b-

A homogeneous Poisson process may be viewed as a special case when λ(t) = λ, a constant 

rate.
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Bubble Signal Analysis - Transform Methods
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f(x) is the time series to be analyzed and F(s) is the complex (mag and phase) Fourier Transform of the time series

Fourier Transform    =    Magnitude and Phase Spectrum        =     F(s)    = 
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Inverse Fourier Transform    =    Real or Complex Time Series     =     f(x)    = 
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The Power Spectral Density Function tells us at which frequencies there is energy within the time series 

that we are analyzing.  A plot of amplitude, power or energy vs. frequency is called a “Spectrogram”

Power Spectral Density    =    PSD      =  
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where  F s( )

 is the complex conjugate of F(s) and s is the complex frequency ( j*  ) 

Power Spectral Density Function
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The PSD Function for a Noised Sine Wave

Average of Several Noisy Spectrograms

Several Noisy Spectrums

Noise + Sinewave Time Series

Clean Sinewave Time Series

Sinewave 

Frequency

Spectrum 

Line of 

Symmetry

This Half is Usually 

Not Plotted

Sinewave is “buried in the noise”
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Power Spectral Density Function - continued

What to Look for When Using the Power Spectral Density Function
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Auto-Correlation Function    =    ACF( )      =  
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where  F ( )
 is the complex conjugate of F( ) ,  is the relative correlation time delay

and s is the complex frequency ( j*  ) 

The Autocorrelation Function measures how similar a time series is to itself when compared at

different relative time delays. Because the Autocorrelation Function is the inverse Fourier

transform of the Power Spectral Density Function, it represents the same information … but …

in a different way.

The PSD relates the time series and its energy at different frequencies. The ACF relates the time

series to a time delayed copy of itself. Because each is the Fourier transform of the other, a

feature in the time series that repeats itself at a fairly regular time intervals will be represented

by a peak in the Autocorrelation function at a time delay equal to the repetition interval. The

same feature will appear in the Power Spectral Density plot as a “peak” at a frequency equal to

the inverse of the time delay ( freq = 1 / time ).

The Autocorrelation Function
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Magnified and explained on 

the next page =  0

1

-1

The Autocorrelation Function
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The Autocorrelation Function - Continued

What to Look for When Using the Autocorrelation Function
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Summary and Conclusions

A preliminary stochastic model is presented for the bubble 

generation and detection processes

Several means of processing bubble signals are presented

By these means, estimates of gas fraction may be obtained


